Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling.

Identifieur interne : 002D15 ( Main/Exploration ); précédent : 002D14; suivant : 002D16

Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling.

Auteurs : Sheng Zhang [République populaire de Chine] ; Hao Jiang ; Shuming Peng ; Helena Korpelainen ; Chunyang Li

Source :

RBID : pubmed:20926551

Descripteurs français

English descriptors

Abstract

Low temperature is one of the abiotic factors limiting plant growth and productivity. Yet, knowledge about sex-related responses to low temperature is very limited. In our study, the effects of low, non-freezing temperature on morphological, physiological, and ultrastructural traits of leaves in Populus cathayana Rehd. males and females were investigated. The results showed that 4 °C temperature caused a chilling stress, and females suffered from greater negative effects than did males. At the early growth stage of development, chilling (4 °C) significantly inhibited plant growth, decreased net photosynthesis rate (P(n)), stomatal conductance (g(s)), transpiration (E), and chlorophyll pigments (Chl), and increased intercellular CO(2) concentration (C(i)), chlorophyll a/b (Chl a/b), proline, soluble sugar and H(2)O(2) contents, and ascorbate peroxidase (APX) activity in both sexes, whereas peroxidase (POD) and glutathione reductase (GR) activities decreased and thiobarbituric acid reactive substance (TBARS) content increased only in females. Chilling stress also caused chloroplast changes and an accumulation of numerous plastoglobules and small vesicles in both sexes. However, disintegrated chloroplasts and numerous tilted grana stacks were only found in chilling-stressed females. Under chilling stress, males showed higher Chl and soluble sugar contents, and higher superoxide dismutase (SOD), POD, and GR activities than did females. In addition, males exhibited a better chloroplast structure and more intact plasma membranes than did females under chilling stress. These results suggest that sexually different responses to chilling are significant and males possess a better self-protection mechanism than do females in P. cathayana.

DOI: 10.1093/jxb/erq306
PubMed: 20926551
PubMed Central: PMC3003813


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling.</title>
<author>
<name sortKey="Zhang, Sheng" sort="Zhang, Sheng" uniqKey="Zhang S" first="Sheng" last="Zhang">Sheng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041</wicri:regionArea>
<wicri:noRegion>Chengdu 610041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Hao" sort="Jiang, Hao" uniqKey="Jiang H" first="Hao" last="Jiang">Hao Jiang</name>
</author>
<author>
<name sortKey="Peng, Shuming" sort="Peng, Shuming" uniqKey="Peng S" first="Shuming" last="Peng">Shuming Peng</name>
</author>
<author>
<name sortKey="Korpelainen, Helena" sort="Korpelainen, Helena" uniqKey="Korpelainen H" first="Helena" last="Korpelainen">Helena Korpelainen</name>
</author>
<author>
<name sortKey="Li, Chunyang" sort="Li, Chunyang" uniqKey="Li C" first="Chunyang" last="Li">Chunyang Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:20926551</idno>
<idno type="pmid">20926551</idno>
<idno type="doi">10.1093/jxb/erq306</idno>
<idno type="pmc">PMC3003813</idno>
<idno type="wicri:Area/Main/Corpus">003048</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003048</idno>
<idno type="wicri:Area/Main/Curation">003048</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003048</idno>
<idno type="wicri:Area/Main/Exploration">003048</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling.</title>
<author>
<name sortKey="Zhang, Sheng" sort="Zhang, Sheng" uniqKey="Zhang S" first="Sheng" last="Zhang">Sheng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041</wicri:regionArea>
<wicri:noRegion>Chengdu 610041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Hao" sort="Jiang, Hao" uniqKey="Jiang H" first="Hao" last="Jiang">Hao Jiang</name>
</author>
<author>
<name sortKey="Peng, Shuming" sort="Peng, Shuming" uniqKey="Peng S" first="Shuming" last="Peng">Shuming Peng</name>
</author>
<author>
<name sortKey="Korpelainen, Helena" sort="Korpelainen, Helena" uniqKey="Korpelainen H" first="Helena" last="Korpelainen">Helena Korpelainen</name>
</author>
<author>
<name sortKey="Li, Chunyang" sort="Li, Chunyang" uniqKey="Li C" first="Chunyang" last="Li">Chunyang Li</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chlorophyll (metabolism)</term>
<term>Chloroplasts (metabolism)</term>
<term>Chloroplasts (ultrastructure)</term>
<term>Cold Temperature (MeSH)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Microscopy, Electron, Transmission (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Leaves (ultrastructure)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Populus (ultrastructure)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basse température (MeSH)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Chloroplastes (ultrastructure)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Feuilles de plante (ultrastructure)</term>
<term>Microscopie électronique à transmission (MeSH)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Photosynthèse (MeSH)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (physiologie)</term>
<term>Populus (ultrastructure)</term>
<term>Spécificité d'espèce (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chlorophyll</term>
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chlorophylle</term>
<term>Chloroplastes</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Chloroplasts</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Microscopy, Electron, Transmission</term>
<term>Photosynthesis</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Basse température</term>
<term>Chloroplastes</term>
<term>Feuilles de plante</term>
<term>Microscopie électronique à transmission</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Spécificité d'espèce</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Low temperature is one of the abiotic factors limiting plant growth and productivity. Yet, knowledge about sex-related responses to low temperature is very limited. In our study, the effects of low, non-freezing temperature on morphological, physiological, and ultrastructural traits of leaves in Populus cathayana Rehd. males and females were investigated. The results showed that 4 °C temperature caused a chilling stress, and females suffered from greater negative effects than did males. At the early growth stage of development, chilling (4 °C) significantly inhibited plant growth, decreased net photosynthesis rate (P(n)), stomatal conductance (g(s)), transpiration (E), and chlorophyll pigments (Chl), and increased intercellular CO(2) concentration (C(i)), chlorophyll a/b (Chl a/b), proline, soluble sugar and H(2)O(2) contents, and ascorbate peroxidase (APX) activity in both sexes, whereas peroxidase (POD) and glutathione reductase (GR) activities decreased and thiobarbituric acid reactive substance (TBARS) content increased only in females. Chilling stress also caused chloroplast changes and an accumulation of numerous plastoglobules and small vesicles in both sexes. However, disintegrated chloroplasts and numerous tilted grana stacks were only found in chilling-stressed females. Under chilling stress, males showed higher Chl and soluble sugar contents, and higher superoxide dismutase (SOD), POD, and GR activities than did females. In addition, males exhibited a better chloroplast structure and more intact plasma membranes than did females under chilling stress. These results suggest that sexually different responses to chilling are significant and males possess a better self-protection mechanism than do females in P. cathayana.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20926551</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>04</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>62</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling.</ArticleTitle>
<Pagination>
<MedlinePgn>675-86</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erq306</ELocationID>
<Abstract>
<AbstractText>Low temperature is one of the abiotic factors limiting plant growth and productivity. Yet, knowledge about sex-related responses to low temperature is very limited. In our study, the effects of low, non-freezing temperature on morphological, physiological, and ultrastructural traits of leaves in Populus cathayana Rehd. males and females were investigated. The results showed that 4 °C temperature caused a chilling stress, and females suffered from greater negative effects than did males. At the early growth stage of development, chilling (4 °C) significantly inhibited plant growth, decreased net photosynthesis rate (P(n)), stomatal conductance (g(s)), transpiration (E), and chlorophyll pigments (Chl), and increased intercellular CO(2) concentration (C(i)), chlorophyll a/b (Chl a/b), proline, soluble sugar and H(2)O(2) contents, and ascorbate peroxidase (APX) activity in both sexes, whereas peroxidase (POD) and glutathione reductase (GR) activities decreased and thiobarbituric acid reactive substance (TBARS) content increased only in females. Chilling stress also caused chloroplast changes and an accumulation of numerous plastoglobules and small vesicles in both sexes. However, disintegrated chloroplasts and numerous tilted grana stacks were only found in chilling-stressed females. Under chilling stress, males showed higher Chl and soluble sugar contents, and higher superoxide dismutase (SOD), POD, and GR activities than did females. In addition, males exhibited a better chloroplast structure and more intact plasma membranes than did females under chilling stress. These results suggest that sexually different responses to chilling are significant and males possess a better self-protection mechanism than do females in P. cathayana.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Sheng</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Hao</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Shuming</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Korpelainen</LastName>
<ForeName>Helena</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Chunyang</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>10</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="N">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20926551</ArticleId>
<ArticleId IdType="pii">erq306</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erq306</ArticleId>
<ArticleId IdType="pmc">PMC3003813</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Sci. 2000 Oct 16;159(1):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11011095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Oct;100(4):839-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10847-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18658241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):81-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Jan;91(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12495915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Mar;27(3):399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jun;31(6):850-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18284585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jul 30;274(31):21811-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10419497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Apr;74(4):749-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):4299-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15563624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Oct;140(2):163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jan;30(1):128-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Oct;32(10):1401-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19552665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1767-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Mar;49(3):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(13):3655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19567480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Dec;52(365):2345-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11709584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Jan;30(1):116-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19917640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Aug;215(4):541-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Sep 15;166(14):1544-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19464753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1978 Feb;61(2):221-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 May;114(1):275-284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1971 Nov;44(1):276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4943714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Jul;28(7):1037-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18450568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biol Int. 2006 Jul;30(7):583-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16730464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Nov;134(3):430-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18573190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2006 Nov-Dec;44(11-12):828-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Apr;132(4):467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18334000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(3):687-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19210720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Jun;136(2):150-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Sep;209(3):364-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10502104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2010 Jul;10(14):2661-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20455211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(14):3813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Nov;90(5):637-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Jan;86(1):143-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 17;406(6797):731-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10963598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Nov;28(11):1751-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18765380</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Jiang, Hao" sort="Jiang, Hao" uniqKey="Jiang H" first="Hao" last="Jiang">Hao Jiang</name>
<name sortKey="Korpelainen, Helena" sort="Korpelainen, Helena" uniqKey="Korpelainen H" first="Helena" last="Korpelainen">Helena Korpelainen</name>
<name sortKey="Li, Chunyang" sort="Li, Chunyang" uniqKey="Li C" first="Chunyang" last="Li">Chunyang Li</name>
<name sortKey="Peng, Shuming" sort="Peng, Shuming" uniqKey="Peng S" first="Shuming" last="Peng">Shuming Peng</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Sheng" sort="Zhang, Sheng" uniqKey="Zhang S" first="Sheng" last="Zhang">Sheng Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D15 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D15 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20926551
   |texte=   Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20926551" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020